skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meyer, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones. 
    more » « less
  2. ABSTRACT Lobatus gigas, the queen conch, is a central component of Caribbean cuisine but over-fishing of juveniles has threatened the stability of wild populations. Strombid gastropods, upon reaching sexual maturity, cease growing along the shell length axis and continue growing in width via a flared and thickened shell lip. This morphology serves as a useful indicator of an individual's sexual maturity. Here we examine temporal trends in population demographics, size, and morphology of harvested L. gigas individuals over the last ∼1 ky from San Salvador Island, the Bahamas to quantify the dynamics of human-induced stress on the local queen conch fishery. We collected 284 human-harvested individuals from shell middens at seven localities, measured seven morphological variables, and classified the specimens as either adult or juvenile. We randomly selected 64 of these shells for rapid AMS radiocarbon dating in order to establish three geochronological bins: Lucayan (Pre-European invasion, 1492 CE), Modern (∼102 y), and Global (∼101 y). The proportion of juveniles harvested increased significantly from 47% (Lucayan) to 61% (Modern) to 68% (Global) suggesting increasing pressure on the fishery through time. Patterns in body size and morphology diverge between adults and juveniles and are likely the result of an increase in the proportion of harvested juveniles, the selection of smaller juveniles through time, and possibly changes in fishing methods. This size selective predation did not result in the suppression of adult body size as found in other studies. Geohistorical data, such as these, are vital for providing long term ecological context for addressing anthropogenic ecological degradation and are central to the conservation paleobiology approach. 
    more » « less
  3. null (Ed.)
    Creating seamless heterostructures that exhibit the quantum Hall effect and superconductivity is highly desirable for future electronics based on topological quantum computing. However, the two topologically robust electronic phases are typically incompatible owing to conflicting magnetic field requirements. Combined advances in the epitaxial growth of a nitride superconductor with a high critical temperature and a subsequent nitride semiconductor heterostructure of metal polarity enable the observation of clean integer quantum Hall effect in the polarization-induced two-dimensional (2D) electron gas of the high-electron mobility transistor. Through individual magnetotransport measurements of the spatially separated GaN 2D electron gas and superconducting NbN layers, we find a small window of magnetic fields and temperatures in which the epitaxial layers retain their respective quantum Hall and superconducting properties. Its analysis indicates that in epitaxial nitride superconductor/semiconductor heterostructures, this window can be significantly expanded, creating an industrially viable platform for robust quantum devices that exploit topologically protected transport. 
    more » « less
  4. null (Ed.)